Functional Specification

BEAM SCREENS FOR THE LHC LONG STRAIGHT SECTIONS

Abstract

This Functional Specification describes the requirements of the beam screens that will be inserted into the LHC Long Straight Sections cold bores.

Prepared by:

Vincent BAGLIN
Nicolaas KOS

Checked by:

Approved by:

Oliver Bruning
Lyn Evans
Bernard Jeanneret
Philippe Lebrun
Steve Myers
Jim Strait
Pierre Strubin

Approval List:

History of Changes

<table>
<thead>
<tr>
<th>Rev. No.</th>
<th>Date</th>
<th>Pages</th>
<th>Description of Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>2002-1-11</td>
<td></td>
<td>First draft.</td>
</tr>
<tr>
<td></td>
<td>2002-01-22</td>
<td></td>
<td>In circulation for approval (1)</td>
</tr>
<tr>
<td></td>
<td>2002-10-16</td>
<td>4 (Table 1)</td>
<td>Q6 in IR 2 & 8 get 46 ID cold bore</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 (2.3.1)</td>
<td>Modified surface resistance value</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8 (Table 3)</td>
<td>Correction of rounding errors, addition of 53 ID cold bore. Additional info concerning 62.98 ID cold bore</td>
</tr>
<tr>
<td></td>
<td>2002-10-30</td>
<td></td>
<td>In circulation for approval (2)</td>
</tr>
<tr>
<td>0.3</td>
<td>2003-02-05</td>
<td>4</td>
<td>Addition : Table 1 also shows the orientation of the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>Addition of reference [4].</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Table 1 : Addition of H/V orientations of beam screens.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>Table 1 : Modified CB diam. 46/49 and 60/64, ref [6].</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>Addition: The beam screen for the undulator</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>Additions: Table 1 also shows the orientation of the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>Addition of reference [7].</td>
</tr>
<tr>
<td></td>
<td>2003-03-17</td>
<td></td>
<td>Last phrase rephrased : The beam screens shall</td>
</tr>
<tr>
<td></td>
<td>All</td>
<td></td>
<td>Section 2 rephrased : All beam screens must be</td>
</tr>
<tr>
<td></td>
<td>2003-04-07</td>
<td>6</td>
<td>Section 2.4.1, rephrased, addition of ref [4].</td>
</tr>
<tr>
<td></td>
<td>All</td>
<td></td>
<td>Section 2.7 rephrased, addition of first phrase.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>Section 2.7, addition : The tolerance on the diameter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>Section 2.7, addition : The beam screen apertures between..</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>Section 2.7, addition of last phrase: The Q1 beam screens...</td>
</tr>
<tr>
<td>1.0</td>
<td>2003-04-10</td>
<td></td>
<td>Table 3 : Update of apertures for type 50A (as for arcs).</td>
</tr>
<tr>
<td></td>
<td>All</td>
<td></td>
<td>Table 3 : Replaced row 46/49 with 50/53 (type 50L).</td>
</tr>
</tbody>
</table>
| | | 6 | Section 2.4.1, ... temperature controllable up to about 75 K ...
| | | 11 | (instead of 100 K). |
| 1.1 | 2004-08-26 | | Additions: Table 1: modification of bs orientations for Q7, DFBA and DFBX following ECO LHC-VSS-EC-0008. Replacement of ref [4]. |
| | | 7 | Section 2.4.1 rephrased, addition of ref [24]. |
| | | 7 | Section 2.4.2 addition of paragraph on saw teeth and ref [27]. |
| | | 8 | Section 2.6 replacement of reference [31]. |
| | | 9 | Section 2.7 addition of refs [35] and [36]. |
| | 2004-09-28 | | Table 3: modif. of aperture values following ECO LHC-VSS-EC-0006. |
| | 2004-10-13 | 4 | Submission for approval. |
| | 6 | 8 | Section 2.4.1 paragraph rephrased, 2nd paragraph added. |
| 1.2 | 2004-10-15 | | Addition:according to Eng. Change Order LHC-VSS-EC-0008..... |
| | All | 4 | Section 2.3.2 addition of last phrase and reference [20]. |
| | 2007-02-05 | | New released version. |
| 1.3 | 2007-02-05 | 4 | Table 1: addition of LEJL beam screens in IR6 (17th conn. cryostat). |
| | | 9 | Table 3: suppression of obsolete 46 and 60 type beam screens. |
| | | | New released version. |
Table of Contents

1. INTRODUCTION...4

2. REQUIREMENTS...5
 2.1 RADIATION RESISTANCE...5
 2.2 MAGNETIC..5
 2.3 ELECTRICAL..5
 2.3.1 SURFACE RESISTANCE...5
 2.3.2 PUMPING SLOTS ...6
 2.4 VACUUM ..6
 2.4.1 BEAM SCREEN WITH CRYOSORBING MATERIALS7
 2.4.2 PHOTON, ELECTRON AND ION INDUCED DESORPTION7
 2.4.3 ION INDUCED BEAM INSTABILITY ...7
 2.4.4 LEAK TIGHTNESS ..7
 2.5 CRYOGENIC...8
 2.5.1 BEAM SCREEN COOLING ...8
 2.6 MECHANICAL...8
 2.7 APERTURE AND LENGTH ..8
 2.8 ASSEMBLY..9
 2.8.1 INSERTION ..9
 2.8.2 INTERCONNECTION ..10
 2.9 RELIABILITY ..10
 2.10 SAFETY ..10

3. REFERENCE DOCUMENTS..11
1. INTRODUCTION

The functionality and vacuum requirements of the beam screens in the LHC Long Straight Section (LSS) have been presented previously [1].

Beam screens are actively cooled beam tubes with distributed pumping slots. Beam screens shall be located in all the cold bores of all the cryogenics elements (except the superconducting cavities) i.e. in superconducting magnets at 1.9 K or 4.5 K and Distribution Feed Boxes (DFBX) of the LSS. The locations of these cryogenic elements in the LSS are shown in Table 1 (optics V6.4). All cold bores operate at 1.9 K or 4.5 K [2]. All connecting cryostats in the LSS have been eliminated [3] and all DFBX’s are assumed to be off the beam axis.

Table 1 also shows the orientation of the beam screens for beams 1 and 2, according to Engineering Change Order LHC-VSS-EC-0008 [4]. For example: HV indicates that beam 1 has the smallest aperture in the horizontal direction and beam 2 has the smallest aperture in the vertical direction.

Table 1: Location of cryogenic elements in the LSS

<table>
<thead>
<tr>
<th>Operating Temp. (K)</th>
<th>Type</th>
<th>Nominal ID/OD (mm)</th>
<th>Interaction Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>50</td>
<td>50/53</td>
<td>Q6L VH Q5L HV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(replaces 46/49)</td>
<td>Q5R HV Q6R HV</td>
</tr>
<tr>
<td>1.9</td>
<td>50</td>
<td>50/53</td>
<td>Q7L HV Q7R VH</td>
</tr>
<tr>
<td>1.9</td>
<td>53</td>
<td>53/57</td>
<td>Q1 H Q1 H</td>
</tr>
<tr>
<td>4.5</td>
<td>63</td>
<td>62.98/66.5</td>
<td>Q4 VV Q5L HH Q4 HH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(replaces 60/64)</td>
<td>Q5L HV Q5R HV Q6R VH</td>
</tr>
<tr>
<td>1.9</td>
<td>63</td>
<td>62.98%/66.5</td>
<td>Q2 H Q3 H Q2 H Q3 H</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(replaces 74/78)</td>
<td>Q2 H Q3 H DFBA VV</td>
</tr>
<tr>
<td>4.5</td>
<td>69</td>
<td>69.08/73</td>
<td>D2 VV D2 HH</td>
</tr>
<tr>
<td>1.9</td>
<td>74</td>
<td>74/78</td>
<td>D1 V DFBX H</td>
</tr>
</tbody>
</table>

*) Increased cold bore diameter as recommended by LCC [6].

%) See footnote table 3.
The beam screen for the undulator in front of D3 in IR4 is under discussion [7].
The beam screens shall maintain the vacuum stability, provide distributed pumping to
minimise the background in the experiments of the Interaction Regions (IR) 1, 2, 5
and 8, carry the image currents, minimise the beam induced heat load to the 1.9 K
and 4.5 K cryogenic system and provide the largest possible aperture.
Two types of beam screens shall be considered:
1. Beam screens inserted into superconducting magnets with a cold bore
temperature of 1.9 K.
2. Beam screens equipped with cryosorber, inserted into superconducting magnets
with a cold bore temperature of 4.5 K.
This specification describes the requirements for the LSS beam screens. The
requirements of the LHC dispersion suppressor beam screens will be described in a
separate document.

2. REQUIREMENTS

All beam screens must be designed for ultimate LHC conditions [8], except those in
the inner triplet (IT) where the quadrupole magnets are designed for an integral of 7
years on the basis of 200 days per year operation at 50% of nominal luminosity.
Afterwards these magnets, including beam screens, will be replaced [9].

2.1 RADIATION RESISTANCE

The beam screens must be able to withstand a radiation dose of 10^7 Gy [10].

2.2 MAGNETIC

The magnetic permeability of the beam screen at the operating temperature should be
kept low to avoid perturbations to the field quality. The maximum acceptable value
depends on the beam screen geometry. A simple cylindrically shaped tube (e.g. cold
bore) can have any permeability as long as it is constant [11]. A non-cylindrical beam
screen with attached cooling tubes should not exceed 1.005 (including welds) [12].

2.3 ELECTRICAL

2.3.1 SURFACE RESISTANCE

The inner surface layer must have a low electrical resistivity at the beam screen
operating temperature. In the case of a copper layer at an operating temperature
< 30 K, the required thickness is $50 \mu m$ with a RRR value of at least 50. This
corresponds to a maximum allowed surface resistance of $7 \mu \Omega$ [13].
Any structure on the inner surface of the beam screen, such as a saw tooth pattern to
lower the forward-scattered reflectivity and photoelectron yield from the direct
synchrotron radiation, must exhibit surface topology $\leq 40 \mu m$ [14].
Longitudinal interruptions in the inner surface layer along the length (e.g. longitudinal
weld) shall be limited in width to 2 mm to limit resistive wall losses. Transverse
interruptions in the inner surface layer along the circumference (e.g. weld) shall be
limited in width to 0.2 mm to limit resistive wall losses [15].
2.3.2 PUMPING SLOTS

Pumping slots with a surface area of up to 4.4% are acceptable in terms of longitudinal and transverse impedance. The length of the pumping slots should have a random variation of $\geq 10\%$ [16].

The length of randomization of the pumping slots should be at least 500 mm longitudinally [17].

The pumping slots should have rounded corners [18].

In order to limit the RF power transmitted through the pumping slots to $\leq 1 \text{ mW/m}$, the maximum slot width is 1.5 mm for 1 mm wall thickness or 1 mm for 0.5 mm wall thickness [19].

Pumping slot shields, as mounted on the arc dipole beam screens [20], will only be necessary on dipole beam screens in V-orientation. In addition they will be mounted on all beam screens of 4.5K magnets to act as cryosorber supports.

2.4 VACUUM

The dynamic beam vacuum gas density is determined by the balance of the quantity of gas desorbed from the beam screen by photon, ion and electron stimulated desorption and the quantity of gas removed. The pumping slots, providing vacuum stability by means of distributed pumping along the beam screen, must not be located where they permit direct electron and ion bombardment of the cold bore [21]. If such locations can not be avoided, the slots must be shielded as for the arc dipole beam screens.

On beam screens in H-orientation, part of the synchrotron radiation will irradiate the pumping slots. Assuming a maximum slot length of 10 mm and a total beam screen wall thickness of 0.675 mm, all synchrotron radiation up to an angle of $\arctan(0.675/10) = 67 \text{ mrad}$ will be intercepted on the beam screen wall. Since the synchrotron radiation angle with the beam screen is $<4 \text{ mrad}$, no synchrotron radiation will directly irradiate the cold bore. No shielding of the slots is therefore necessary.

The dynamic gas density must be compatible with operation of the experiments and a hydrogen equivalent dynamic gas density must be less than $1 \cdot 10^{15} \text{ molecules m}^{-3}$ [22]. The impact of the dynamic gas density on the radiation dose and contact dose onto the elements is currently under evaluation.

The vapour pressure of all gases, other than hydrogen and helium, remains insignificant to the gas density, if the temperature of the inner beam screen surface is maintained below 20 K. In order to desorb physisorbed gas layers accumulated on the beam screen, desorbed from the cold bore during a magnet quench, it must be possible to heat the beam screen. The temperature of the beam screen during this operation must be at least that reached by the maximum cold bore temperature after a quench at ultimate conditions. A temperature $>80 \text{ K}$ will ensure the thermal desorption of H_2, CH_4, CO and CO_2.

If a beam screen temperature of 20 K can not be guaranteed, it must be possible to heat the beam screen after a magnet quench and occasionally between fills. A beam screen temperature of up to about 24 K will require warming up at least on the monthly time scale for a fully conditioned beam screen. A beam screen temperature above 24 K will require warming up on the weekly time scale for a fully conditioned beam screen.

For a beam screen operating temperature $>20 \text{ K}$, the heat load to the 1.9 K or 4.5 K circuit may increase and the beam lifetime may decrease [23, 24].

A commissioning of the vacuum system will be mandatory to reduce the desorption yields, photoelectron yields and secondary electron yields, such that the required densities at nominal and ultimate machine conditions may be met.
2.4.1 BEAM SCREEN WITH CRYOSORBING MATERIALS

It is expected that ~ 150 monolayers of hydrogen will be desorbed per year [24]. Cryosorber is therefore required in cryoelements with a vacuum cold bore of temperature higher than 3 K and shall act as a sink of gas in a similar manner to the 1.9 K cold bore. It will be located on the outer surface of the beam screen. The cryosorber shall be thermally anchored to the beam screen. It shall be thermally isolated from the cold bore to allow regeneration and gas transfer in case of plugging of its pores i.e. when the bulk of the cryosorber is no longer accessible to the gas.

The beam screen cross-sections are optimised for aperture. As a consequence, the available space for cryosorbing materials is very limited. The aim will be to have an amount of cryosorbing material providing a pumping speed which is at least equal to the slot’s pumping speed. An analysis of the required performances of the cryosorbers is given in [25]. Experimental data have shown that the beam screen must be temperature controllable up to about 75 K to allow regeneration of the cryosorber [26].

The cryosorbing materials shall not be damaged or detached during a quench.

2.4.2 PHOTON, ELECTRON AND ION INDUCED DESORPTION

To meet the 100 hour machine lifetime, a hydrogen equivalent dynamic gas density due to photon, electron and ion stimulated desorption must be less than \(1 \cdot 10^{15}\) molecules m\(^{-3}\). Table 2 shows the relative proton-nuclear scattering cross section, \(\sigma/\sigma_{H_2}\) of various gas species used to compute the beam life time for given gas densities [27].

Saw teeth, to intercept synchrotron radiation, are not necessary on the LSS beam screen inner surface [28]. Only the Q7 beam screens will have saw teeth since they will be produced from arc-type beam screen tube.

<table>
<thead>
<tr>
<th></th>
<th>(\sigma/\sigma_{H_2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H_2)</td>
<td>1</td>
</tr>
<tr>
<td>He</td>
<td>1.26</td>
</tr>
<tr>
<td>(CH_4)</td>
<td>5.4</td>
</tr>
<tr>
<td>(H_2O)</td>
<td>5.4</td>
</tr>
<tr>
<td>CO</td>
<td>7.8</td>
</tr>
<tr>
<td>(CO_2)</td>
<td>12.2</td>
</tr>
</tbody>
</table>

2.4.3 ION INDUCED BEAM INSTABILITY

The beam vacuum must remain stable and not exhibit run-away pressure rises due to ion induced desorption up to the ultimate machine current [8]. The ion-induced pressure instability can be avoided by ensuring that the molecules are cryosorbed on surfaces, which are in the shadow of the beam [27]. The beam screen provides the shadow.

2.4.4 LEAK TIGHTNESS

As a design principle, helium to beam vacuum welds shall be avoided.

As a design principle, the installation of helium carrying components with a measurable leak to the beam vacuum shall not be permitted.
The maximum allowed leak rate under operating conditions from helium to beam vacuum shall be calculated to verify that the sensitivity of the applied leak testing procedures will be sufficient.

2.5 CRYOGENIC

2.5.1 BEAM SCREEN COOLING

The cryogenic elements in the LSS have been designed to accept both the static and dynamic heat loads into the cryogenic circuit of the cold bore. Therefore a beam screen is not required to intercept the dynamic heat loads [29].

However for vacuum requirements beam screens are mandatory (section 2.4).

In order to maintain their required operating temperature, the dynamic heat load must therefore be extracted (in the arcs, the expected distributed ultimate heat load into the beam screen is 1.13 W m\(^{-1}\) from resistive heating, synchrotron radiation and photoelectrons). The hydraulic resistance of the beam screen cooling tubes and the thermal resistance of the cooling tube attachment to the beam screen shall allow to evacuate the dynamic heat load [30].

Depending on the thermal resistance between the helium and the beam screen inner surface, the maximum helium temperature shall be slightly lower than the maximum allowed beam screen temperature.

The heater on the inlet of the beam screen cooling circuit should be rated to permit the beam screen temperature to be raised to \(\geq 80\) K occasionally between fills in order to limit the coverage of physisorbed gases (see section 2.4).

2.6 MECHANICAL

The beam screen must remain mechanically stable during all aspects of manufacture, installation and operation. The beam screen is subjected to large forces due the magnetic field decay following a magnet quench, and may have \(B \cdot dB/dt_{\text{max}}\) as large as 275 T2/s (value for arc dipole magnet, assumed here to be the worst case [31]). Calculations have been performed to verify the mechanical stability during a quench [32]. Further calculations will be performed for rotated beam screens, in particular with respect to the stress concentration factor between cooling tube and sliding rings.

If the beam screen deformation during quench exceeds the width of the annular gap between the beam screen and cold bore, forces will be transferred to the latter.

In the arc dipole magnets, a lateral horizontal displacement of the beam screen has been observed during quench, due to the asymmetry of the magnetic field [33]. The implications of this effect for the LSS magnets should be investigated.

The beam screen must remain undamaged and without residual deformation after 100 magnet quenches [8].

2.7 APERTURE AND LENGTH

The beam screens shall be designed to maximise the beam aperture.

The beam screens shall be inserted in the given cold bores of nominal ID of 50, 53, 62.98, 69.08 and 74 mm. Extrapolated from the existing technology developed for the arc beam screen [34], the LSS beam screens nominal dimensions and provided apertures at their operating temperature are shown in Table 3. The apertures are calculated with cumulative error propagation [35] and based on a longitudinal distance between sliding rings of 757 mm (50A type beam screens) [36] and 383 mm (all other beam screen types) [37].
The tolerance on the diameter of the arc beam screens is ±0.2 mm. For the LSS beam screens, the tolerance is assumed to scale linearly with the diameter.

The assumed copper thickness of 75 μm in table 3 is the maximum foreseen thickness and therefore represents the worst case in terms of aperture. The beam screen apertures between flats are based on a nominal cooling tube outer diameter of 4.76 mm. The calculated aperture takes into account the cold bore inner diameter tolerance. This tolerance should therefore not be included in the global alignment and mechanical tolerances. Beam screen materials consist of P506 grade stainless steel co-laminated with OFE copper.

Where possible, the inner cold bore diameters of the finished magnets will be measured with go/no go gauges before beam screen manufacture, to ensure that the proposed beam screen diameter is appropriate.

The Q1 beam screens will be built with a diameter transition to increase the aperture in the Q1-Q2 interconnect.

Table 3: Nominal LSS beam screens dimensions, apertures at their operating temperature and approximate cumulative lengths.

<table>
<thead>
<tr>
<th>B. screen type</th>
<th>Cold Bore</th>
<th>Nominal Beam Screen Dimension</th>
<th>Beam screen aperture</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ID/OD</td>
<td>ID Tolerance (mm)</td>
<td>Steel + Cu thickness (mm)</td>
<td>Radial OD (mm)</td>
</tr>
<tr>
<td>50A*</td>
<td>50/53</td>
<td>0.35 [38]</td>
<td>1.0+0.075</td>
<td>48.5</td>
</tr>
<tr>
<td>50L+</td>
<td>50/53</td>
<td>0.35 [38]</td>
<td>0.6+0.075</td>
<td>48.5</td>
</tr>
<tr>
<td>53</td>
<td>53/57</td>
<td>0.50 [39]</td>
<td>0.6+0.075</td>
<td>51.3</td>
</tr>
<tr>
<td>63</td>
<td>62.98%/66.5</td>
<td>0.38</td>
<td>0.6+0.075</td>
<td>61.4</td>
</tr>
<tr>
<td>69</td>
<td>69.08/73</td>
<td>0.74 [40]</td>
<td>0.6+0.075</td>
<td>67.1</td>
</tr>
<tr>
<td>74</td>
<td>74/78</td>
<td>0.78 [40]</td>
<td>0.6+0.075</td>
<td>72.0</td>
</tr>
</tbody>
</table>

*) Arc type beam screens for 1.9 K elements.
+*) LSS type beam screens for 4.5 K elements.

The cold bore diameter has changed with respect to the previous version of this document. The specified OD is 66.5 +/-0.25, the specified wall thickness is 1.85 +/- 0.15 [41]. Specified ID is therefore 62.8 +/- 0.55. ID measurements at CERN with go/no go gauges showed a minimum ID of 62.6 mm [42]. The maximum ID, calculated from the tolerances is 62.8+0.55=63.35. Nominal ID, calculated as the average of measured minimum and the specified maximum, then becomes (62.6+63.35)/2 = 62.98. ID tolerance becomes +/- 0.38 mm. It is imperative that the cold bore diameter does not change during cold mass assembly.

2.8 ASSEMBLY

2.8.1 INSERTION

The beam screens shall be inserted in the cold bore apertures before magnet installation in the tunnel. Straightness, twist and dimensional tolerances of the beam screens shall allow for insertion without damaging the beam screen or the magnet.

Insertion shall be a clean process since no further cleaning will take place after insertion.

Repair or replacement of a beam screen will require displacement of the magnet. The radiation contact dose rate may complicate the work.
2.8.2 INTERCONNECTION

The continuity of the electrical conductivity of the inner beam screen surface shall be assured by interconnections [43].

The beam screen thermal expansion and contraction shall be allowed for by the support system and the interconnections.

2.9 RELIABILITY

The beam screens will be inside the apertures of the cryo-elements. Any repair or replacement will require replacement of the cryo-element and possibly up to 2 interconnects.

The beam screen design and manufacture shall therefore be based on well understood techniques and materials. They shall allow for testing under representative conditions before installation.

Manufacturing shall be according to a recognised quality assurance system.

2.10 SAFETY

The beam screen design shall allow manufacturing, testing and operation in accordance with applicable CERN safety regulations.
3. REFERENCE DOCUMENTS

[17] F. Ruggiero, private communication by E-mail to I. Collins on 28-09-2000.
[26] V. Baglin et al., Cryosorber studies for the LHC long straight section beam screens with coldex, LHC Project report 580, 02-07-2002.
[33] Ch. Rathjen et al, Currents in, forces on and deformations/displacements of the LHC beam screen expected during a magnet quench, LHC Project Report 489.
[34] I. Collins et al., Beam Screens for the LHC Arc Magnet. Functional Specification, LHC-VSS-ES-0001.00 rev.1.1
[42] N. Kos, Private communication by E-mail on 11-07-2002.