Automated Deployment of Siemens Software

Omer Khalid, Mathias Dutour

EN-ICE-SIC

19th May 2009
Outline

- Background
- Objectives
- Approach/Initiatives
- Progress and Milestones
- Questions and Discussion
Background

• LHC Control Equipment
 • Such as gas controls, alarms, temperature sensors etc etc
 • Monitored by Programmable Logic Controllers (PLC)
 • Transit between different states, collect input from the control equipment/sensors and send to PVSS (data acquisition layer)
 • Large PLC user base at CERN

• Two main providers of PLC
 • Siemens
 • S300, S700
 • Schneider
Background II

- Step7 IDE provided by Siemens
 - To develop PLC code for the PLC’s
 - Deployed to PLC’s through Ethernet

- Has different programming interfaces
 - A programming language
 - Graphical language to describe states of PLC
 - And many other add-on tools to enhance its capabilities
Objectives

- Siemens objective: To bring-in modern software engineering capabilities to Step7 product line

1. Step7 “Openness”
 - Source code versioning control
 - Capability available in PVSS but not in Step7
 - Initially source files had a binary format rather then plain text
 - Difficult for differentiating/comparing source files
 - Evolving to text based source files
 - Syntax highlighting
 - Keywords, blocks, functions
 - to improve PLC programmers productivity and reduce errors
Objectives II

2. Step7 “Automated Deployment”

• To automate the deploy Siemens software (Step7 initially) on a group of machines
• Custom solution or using off the shelf tools
• Enabling system administrators to roll out newer patches and upgrades
• Scalability: from small (10’s of machines) to large (100’s of machines)
• Easy to learn and deploy, fast refresh rate
• Ultimate AIM: to add value for Siemens customers

FIRTST PRIORITY!!!
Approach

• Market survey of available tools
 • Identify their capabilities, cost and licensing issues
 • Proprietary, Open-Source (what kind of ??)
 • Build a feature and comparison matrix
 • Compare against Project Requirement Document
 • Shortlist the tools
 • Validate the solution with Siemens dev. team
 • Finally, provide a concrete proposal for Siemens

• STATUS: currently at the validation stage and market survey document already sent to Siemens

European Organization for Nuclear Research
Approach II

• Gathering deployment of Step7 experience inside CERN: To learn about
 • Current practices at CERN
 • E.g. User self-managed or admins managing it? How?
 • Deployment environment and context
 • E.g. Where its deployed? GPN, Technical network?
 • Potential current issues and bottleneck
 • Are they using any tools to help them, if yes which ones? What is the frequency of the Step7 updates? Does the configuration change often? etc etc

• STATUS: A survey have been sent PLC users and would be completing in few days.
Approach III

• Meetings and brainstorming sessions with EN-ICE-PLC section
 • As they provide user support and services to CERN PLC community
 • Currently administers the availability of Step7 software
 • Learning and gathering their experiences

• STATUS: a list of deployment use cases focusing on CERN’s context have been identified, developed and documented. Available to Siemens.
Milestones

• Project started in March and the work packages/plan was prepared

• Deliverables so far (with iterations):
 • Market survey of the tools
 • PLC User survey feedback
 • CERN Use cases

• Next:
 • Software architecture document, validation of the selected tool at CERN, transfer of the code to Siemens

• Completion: End of Aug 2009
Conclusion

• Focusing on Step7 Deployment only
• Developing Work packages and project plan
• Identifying available tools
• Understanding present CERN’s Step7 use cases and deployment practices
• Prepare a proposal for Siemens
• Validate/Test it
• Final Implementation

QUESTIONS!!!